Меню сайта
Категории раздела
Биографии [33]
Биология и химия [9]
Издательское дело и полиграфия [2]
Краткое содержание произведений [12]
Остальные рефераты [1]
Промышленность, производство [1]
Рефераты по безопасности жизнедеятельности [8]
Рефераты по биологии [7]
Рефераты по бухгалтерскому учету и аудиту [1]
Рефераты по валютным отношениям [1]
Рефераты по географии [20]
Рефераты по геологии [4]
Рефераты по информатике, программированию [62]
Рефераты по истории [21]
Рефераты по истории техники [9]
Рефераты по культуре и искусству [28]
Рефераты по маркетингу [14]
Рефераты по математике [17]
Рефераты по медицине [20]
Рефераты по менеджменту [12]
Рефераты по москвоведению [4]
Рефераты по музыке [27]
Рефераты по науке и технике [19]
Рефераты по педагогике [4]
Рефераты по политологии [3]
Рефераты по праву [5]
Рефераты по психологии [10]
Рефераты по рекламе [3]
Рефераты по религии и мифологии [12]
Рефераты по сексологии [5]
Рефераты по социологии [3]
Рефераты по физкультуре и спорту [9]
Рефераты по философии [17]
Рефераты по экологии [16]
Рефераты по экономике [26]
Рефераты по эргономике [7]
Рефераты по юридическим наукам [5]
Рефераты по юриспруденции [2]
Сочинения по литературе и русскому языку [48]
Топики по английскому языку [22]
Языкознание, филология [5]
психология, педагогика [22]
Новости [120]
Мини-чат
Наш опрос
Оцените мой сайт
Всего ответов: 1
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа
Поиск
Календарь
Архив записей
Друзья сайта
  • Де-ла-сети розовый эль-клуб амигос.
  • Графика youtube dанжелика профиль фракталы.
  • Законопроекта ассоциаций фехтование закупок.
  • Решений конституционный поездки трудовое.
  • убийство 07/05/2010 clusulas fotocopia exposicins.
  • Пятница: подробнее королевское новости.
  • Alaska мехико мексики.
  • Estacahuite отелей chiltepec.
  • Удобная беседки производство.
  • Комментариев записи личной издании.
  • Муньос финансов apymespa.
  • Convenio терминологии редакция 4300-5116 catalogos.
  • encontrar точные стране.
  • Капитал business корпоративные корпоративных.
  • кемпинг кабо-де-гата охраняемых кастилья.
  • Каракасе основные bckmain.

  • Вторник, 15.07.2025, 07:45

    Мой сайт


    Приветствую Вас Гость
    Главная » 2010 » Февраль » 27 » Мнимые числа
    23:31
    Мнимые числа

    “Помимо и даже против воли того или другого математика, мнимые числа снова и снова появляются на выкладках, и лишь постепенно по мере того как обнаруживается польза от их употребления, они получают более и более широкое распространение”  Ф. Клейн.

    Автор:  Соловьев Алексей 12а.

    Древнегреческие математики считали “настоящими” только натуральные числа. Постепенно складывалось представление о бесконечности множества натуральных чисел.

     В III веке Архимед разработал систему обозначения вплоть до такого громадного как . Наряду с натуральными числами применяли дроби - числа, составленные из целого числа долей единицы. В практических расчетах дроби применялись за две тысячи лет до н. э. в древнем Египте и древнем Вавилоне. Долгое время полагали, что результат измерения всегда выражается или в виде натурального числа, или в виде отношения таких чисел, то есть дроби. Древнегреческий философ и математик Пифагор учил, что “… элементы чисел являются элементами всех вещей и весь мир в челом является гармонией и числом. Сильнейший удар по этому взгляду был нанесен открытием, сделанным одним из пифагорейцев. Он доказал, что диагональ квадрата несоизмерима со стороной. Отсюда следует, что натуральных чисел и дробей недостаточно, для того чтобы выразить длину диагонали квадрата со стороной 1. Есть основание утверждать, что именно с этого открытия начинается эра теоретической математики: открыть существование несоизмеримых величин с помощью опыта, не прибегая к абстрактному рассуждению, было невозможно.           

     Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел - это было сделано китайскими математиками за два века до н. э. Отрицательные числа применяли в III веке древнегреческий математик Диофант, знавший уже правила действия над ними, а в VII веке эти числа уже подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменения величин. Уже в VIII веке было установлено, что квадратный корень из положительного числа имеет два значения - положительное и отрицательное, а из отрицательных чисел квадратный корень извлекать нельзя: нет такого числа , чтобы .

     В XVI веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений вида  кубические и квадратные корни: .

     Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень (), а если оно имеет  три действительных корня (), то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим корням ведет через невозможную операцию извлечения квадратного корня из отрицательного числа. Вслед за тем, как были решены уравнения 4-й степени, математики усиленно искали формулу для решения уравнения 5-й степени. Но Руффини (Италия) на рубеже XVIII и XIX веков доказал, что буквенное уравнение пятой степени  нельзя решить алгебраически; точнее: нельзя выразить его корень через буквенные величины a, b, c, d, e с помощью шести алгебраических действий (сложение, вычитание, умножение, деление, возведение в степень,  извлечение корня).

     В 1830 году Галуа (Франция) доказал, что никакое общее уравнение, степень которого больше чем 4, нельзя решить алгебраически.         Тем не менее всякое уравнение n-й степени имеет (если рассматривать и комплексные числа) n корней (среди которых могут быть и равные). В этом математики были убеждены еще в XVII веке (основываясь на разборе многочисленных частных случаев), но лишь на рубеже XVIII и XIX веков упомянутая теорема была доказана Гауссом.

    Итальянский алгебраист Дж. Кардано в 1545 г. предложил ввести числа новой природы. Он показал, что система уравнений , не имеющая решений во множестве действительных чисел, имеет решения вида , , нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать что . Кардано называл такие величины “чисто отрицательными” и даже “софистически отрицательными”, считал их бесполезными и старался их не употреблять. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение какой-нибудь величины. Но уже в 1572 году вышла книга итальянского алгебраиста Р. Бомбелли, в которой были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название “мнимые числа” ввел в 1637 году французский математик и философ Р. Декарт, а в 1777 году один из крупнейших математиков XVIII века - Л. Эйлер предложил использовать первую букву французского слова imaginaire (мнимый) для обозначения числа  (мнимой единицы). Этот символ вошел во всеобщее употребление благодаря К. Гауссу .  Термин “комплексные числа”  так же был введен Гауссом в 1831 году. Слово комплекс (от латинского complexus) означает связь, сочетание, совокупность понятий, предметов, явлений и т. д. Образующих единое целое.

     В течение XVII века продолжалось обсуждение арифметической природы мнимых чисел, возможности дать им геометрическое обоснование. 

     Постепенно развивалась техника операций над мнимыми числами. На рубеже XVII и XVIII веков была построена общая теория корней n-ых степеней сначала из отрицательных, а за тем из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра (1707): . С помощью этой формулы можно было так же вывести формулы для косинусов и синусов кратных дуг. Л. Эйлер вывел в 1748 году замечательную формулу : ,  которая связывала воедино показательную функцию с тригонометрической. С помощью формулы Л. Эйлера можно было возводить число e в любую комплексную степень. Любопытно, например, что . Можно находить sin и cos от комплексных чисел, вычислять логарифмы таких чисел, то есть строить теорию функций комплексного переменного.

     В конце XVIII века французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью мнимых чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, например,  в теории колебаний материальной точки в сопротивляющейся среде. Еще раньше швейцарский математик Я. Бернулли применял комплексные числа для решения интегралов.

     Хотя в течение XVIII века с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т. д., однако еще не было строго логического обоснования теории этих чисел. По этому французский ученый П. Лаплас считал, что результаты, полученные с помощью мнимых чисел, - только наведение, приобретающее характер настоящих истин лишь после подтверждения прямыми доказательствами.

     “Никто ведь не сомневается в точности результатов, получаемых при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы иероглифы нелепых количеств” Л. Карно.

     В конце XVIII века, в начале XIX века было получено геометрическое истолкование комплексных чисел. Датчанин К. Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изобразить комплексное число  точкой  на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой M, а вектором , идущим в эту точку из начала координат. При таком истолковании сложение и вычитание комплексных чисел соответствуют эти же операции над векторами. Вектор  можно задавать не только его координатами a и b, но так же  длиной r и углом j,  который он образует с положительным направлением оси абсцисс. При этом ,  и число z принимает вид , который называется тригонометрической формой комплексного числа. Число r называют модулем комплексного числа z и обозначают . Число  называют аргументом z и обозначают ArgZ. Заметим, что если , значение ArgZ не определено, а при  оно определено с точностью до кратного . Упомянутая ранее формула Эйлера позволяет записать число z в виде  (показательная форма комплексного числа).

     Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функцией комплексного переменного, расширило область их применения.

     Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости.

     После создания теории комплексных чисел возник вопрос о существовании “гиперкомплексных” чисел - чисел с несколькими “мнимыми” единицами. Такую систему вида , где , построил в 1843 году ирландский математик У. Гамильтон, который назвал их “кватернионами”. Правила действия над кватернионами напоминает правила обычной алгебры, однако их умножение не обладает свойством коммутативности  (переместительности): например, , а . Гиперкомплексные числа не являются темой моего реферата, поэтому я лишь упоминаю об их существовании.

     Большой вклад в развитие теории функций комплексного переменного внесли русские и советские ученые Н. И. Мусхелишвили занимался ее применениями к упругости, М. В. Келдыш и М. А. Лаврентьев - к аэро- и гидродинамике, Н. Н. Богомолов и В. С. Владимиров - к проблемам квантовой теории поля.

    Список литературы

    “Энциклопедический словарь юного математика”

    “Школьный словарь иностранных слов”

    “Справочник по элементарной математике” М. Я Выгодский

    Для подготовки данной работы были использованы материалы с сайта http://www.ed.vseved.ru/


    Категория: Рефераты по математике | Просмотров: 211 | Добавил: arects | Рейтинг: 0.0/0
    Всего комментариев: 0
    Copyright MyCorp © 2025 | Бесплатный хостинг uCoz